
Snappy: Fast On-chain Payments
with Practical Collaterals

Vasilios Mavroudis
University College London

v.mavroudis@ucl.ac.uk

Karl Wüst
ETH Zurich

karl.wuest@inf.ethz.ch

Aritra Dhar
ETH Zurich

aritra.dhar@inf.ethz.ch

Kari Kostiainen
ETH Zurich

kari.kostiainen@inf.ethz.ch

Srdjan Capkun
ETH Zurich

srdjan.capkun@inf.ethz.ch

Abstract—Permissionless blockchains offer many advantages
but also have significant limitations including high latency. This
prevents their use in important scenarios such as retail payments,
where merchants should approve payments fast. Prior works have
attempted to mitigate this problem by moving transactions off the
chain. However, such Layer-2 solutions have their own problems:
payment channels require a separate deposit towards each
merchant and thus significant locked-in funds from customers;
payment hubs require very large operator deposits that depend
on the number of customers; and side-chains require trusted
validators.

In this paper, we propose Snappy, a novel solution that
enables recipients, like merchants, to safely accept fast pay-
ments. In Snappy, all payments are on the chain, while small
customer collaterals and moderate merchant collaterals act as
payment guarantees. Besides receiving payments, merchants also
act as statekeepers who collectively track and approve incoming
payments using majority voting. In case of a double-spending
attack, the victim merchant can recover lost funds either from
the collateral of the malicious customer or a colluding statekeeper
(merchant). Snappy overcomes the main problems of previous
solutions: a single customer collateral can be used to shop with
many merchants; merchant collaterals are independent of the
number of customers; and validators do not have to be trusted.
Our Ethereum prototype shows that safe, fast (<2 seconds) and
cheap payments are possible on existing blockchains.

I. INTRODUCTION

Cryptocurrencies based on permissionless blockchains have
shown great potential in decentralizing the global financial sys-
tem, reducing trust assumptions, increasing operational trans-
parency and improving user privacy. However, this technology
still has significant limitations, preventing it from posing as
valid alternative to established transaction means such as card
payments.

One of the main problems of permissionless blockchains is
high latency. For example, in Ethereum [1], users have to wait
approximately 3 minutes (10 blocks) before a new payment can
be safely accepted [2], [3]. In comparison, traditional and cen-
tralized payment systems such as VISA can confirm payments
within 2 seconds [4]–[6]. High latency makes permissionless
blockchains unsuitable for many important applications such
as point-of-sale purchases and retail payments.

To improve blockchain performance, various consensus
schemes have been proposed [7]. While techniques like
sharding and Proof-of-Stake can increase the throughput of
blockchains significantly, currently there are no promising
solutions that would drastically decrease the latency of per-
missionless blockchains.

Thus, researchers have explored alternative avenues to
enable fast payments over slow blockchains. Arguably, the
most prominent approach are Layer-2 solutions that move
transaction processing off the chain and use the blockchain
only for dispute resolution and occasional synchronization.
However, such solutions have their own shortcomings. For
example, payment channels require a separate deposit for each
channel, resulting in large locked-in funds for users such as
retail customers [8], [9]. Payment networks cannot guarantee
available paths and are incompatible with the unilateral nature
of retail payments from customers to merchants [10], [11].
Payment hubs [12], [13] require either a trusted operator or
huge collaterals that are equal to the total expenditure of
all customers [14], [15]. Side-chains based on permissioned
BFT consensus require 2/3 trusted validators and have high
communication complexity [16], [17].

Our solution. In this paper, we introduce Snappy, a system
that enables safe and fast (zero-confirmation) on-chain pay-
ments. Snappy can be used today on top of low-throughput and
high-latency blockchains such as Ethereum and in the future on
top of (sharded) high-throughput and mid-latency blockchains.

We tailor our solution for application scenarios such as
retail payments, but emphasize that our design can be used
in any scenario where a large number of users (e.g., 100,000
customers) make payments towards a moderate set of recip-
ients (e.g., 100 merchants). In Snappy, the merchants form
a joint consortium that may consist of large retailers with
several stores globally or small local stores from the same
neighborhood. The merchants need to communicate to be
able accept fast-payments safely, but importantly neither the
merchants nor the customers have to trust each other.

Snappy relies on customer collaterals that enable merchants
to safely accept payments before the transaction has reached
finality in the blockchain. The collaterals serve as payment
guarantees and are deposited by customers to a smart contract
during system enrollment. If the transaction corresponding to
an accepted payment does not appear in the blockchain within
a reasonable time (double-spending attack), the victim mer-
chant can recoup the lost funds from the malicious customer’s
collaterals. The customer’s deposit should cover the value

Pre-print version of a conference publication to appear in:
Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

of the customer’s purchases within the latency period of the
blockchain (e.g., 3 minutes in Ethereum) which makes them
small in practice (e.g., $100 would suffice for many users).
Moreover, customers do not need to repeatedly replenish their
collaterals, as they are used only in the case of attack.

In Snappy, the payment recipients (merchants) act as
untrusted statekeepers whose task is to track and collectively
approve incoming transactions. To initiate a fast payment,
a customer creates a transaction that transfers funds to a
smart contract and indicates the merchant as beneficiary. The
recipient merchant sends the transaction to the statekeepers and
proceeds with the sale only if a majority of them approves it
with their signatures. Upon collecting the required signatures,
the merchant broadcasts the transaction in the blockchain
network to be processed by an Arbiter smart contract. Once
the transaction is processed and logged by the Arbiter, the
payment value is forwarded to the merchant.

Statekeepers must also deposit collaterals that protect mer-
chants from attacks where a malicious statekeeper colludes
with a customer. In such a case, the victim merchant can use
the statekeeper’s approval signatures as evidence to claim any
lost funds from the misbehaving statekeeper’s collateral. The
size of statekeeper collateral is proportional to the total amount
of purchases that all participating merchants expect within the
blockchain latency period. Crucially, the statekeeper collaterals
are independent of the number of customers which allows
the system to scale. The main security benefit of statekeeper
collaterals is that they enable fast and safe payments without
trusted parties.

Main results. We prove that a merchant who follows the
Snappy protocol and accepts a fast payment once it has been
approved by the majority of the statekeepers never loses funds
regardless of any combination of customer and statekeeper
collusion. We also demonstrate that Snappy is practical to
deploy on top of existing blockchains by implementing it
on Ethereum. The performance of our solution depends pri-
marily on number of participating statekeepers (merchants).
For example, assuming a deployment with 100 statekeepers, a
payment can be approved in less than 200 ms with a processing
cost of $0.16 (169k Ethereum gas), which compares favorably
to card payment fees.

Snappy overcomes the main problems of Layer-2 solutions
in application scenarios such as retail payments. In contrast
to BFT side-chains that assume that 2/3 honest validators and
require multiple rounds of communication, Snappy requires no
trusted validators and needs only one round of communication.
Unlike payment channels, Snappy enables payments towards
many merchants with a single and small customer deposit. In
contrast to payment networks, Snappy payments can always
reach the merchants, because there is no route depletion. And
finally, the statekeeping collaterals are practical even for larger
deployments, compared to those in payment hubs, as they are
independent of the number of customers in the system.

Contributions. This paper makes the following contributions:

v Novel solution for fast payments. We propose a sys-
tem called Snappy that enables fast and secure pay-
ments on slow blockchains without trusted parties using

moderately-sized and reusable collaterals that are practi-
cal for both customers and merchants.

v Security proof. We prove that merchants are guaranteed
to receive the full value of all accepted payments, in any
possible combination of double spending by malicious
customers and equivocation by colluding statekeepers.

v Evaluation. We implemented Snappy on Ethereum and
show that payment processing is fast and cheap in prac-
tice.

This paper is organized as follows: Section II explains the
problem of fast payments, Section III provides an overview of
our solution and Section IV describes it in detail. Section V
provides security analysis and Section VI further evaluation.
Section VII is discussion, Section VIII describes related work,
and Section IX concludes the paper.

II. PROBLEM STATEMENT

In this section we motivate our work, explain our assump-
tions, discuss the limitations of previous solutions, and specify
requirements for our system.

A. Motivation

The currently popular permissionless blockchains (e.g., Bit-
coin and Ethereum) rely on Proof-of-Work (PoW) consensus
that has well-known limitations, including low throughput (7
transactions per second in Bitcoin), high latency (3 minutes
in Ethereum), and excessive energy consumption (comparable
to a small country [18]). Consequently, the research commu-
nity has actively explored alternative permissionless consen-
sus schemes. From many proposed schemes, two prominent
approaches, Proof of Stake and sharding, stand out [7].

Proof of Stake (PoS) systems aim to minimize the en-
ergy waste by replacing the computationally-heavy puzzles
of PoW with random leader election such that the leader
selection probability is proportional to owned staked. While the
current PoS proposals face various security and performance
issues [7], the concept has shown promise in mitigating the
energy-consumption problem.

Sharding systems increase the blockchain’s throughput by
dividing the consensus participants into committees (shards)
that process distinct sets of transactions. Recent results re-
ported significant throughput increases in the order of thou-
sands of transactions per second [19], [20]. Despite several
remaining challenges, sharding shows great promise in im-
proving blockchain throughput.

Sharding and PoS can also address transaction latency.
Recent works such as Omniledger [19] and RapidChain [20]
use both techniques and report latencies from 9 to 63 seconds,
assuming common trust models like honest majority or 1/3
Byzantine nodes. However, such measurements are achieved
in fast test networks (permissionless blockchains rely on slow
peer-to-peer networks) and under favorable work loads (e.g.,
largely pre-sharded transactions).

Our conclusion is that while permissionless blockchain
throughput and energy efficiency are expected to improve in
the near future, latency will most likely remain too high for
various scenarios such as point-of-sale payments and retail

2

shopping, where payment confirmation is needed within 1-
2 seconds. Therefore, in this paper we focus on improving
blockchain payment latency. We consider related problems like
limited blockchain throughput as orthogonal problems with
known solutions. Appendix A provides further background on
permissionless consensus.

B. System Model and Assumptions

Customers and merchants. We focus on a setting where n
users send payments to k recipients such that n is large and
k is moderate. One example scenario is a set of k = 100
small shops where n = 100, 000 customers purchase goods at.
Another example is k = 100 larger retail stores with n = 1
million customers [21], [22].

We consider merchants who accept no risk, i.e., they hand
the purchased products or services to the customers, only if
they are guaranteed to receive the full value of their sale.
Therefore, naive solutions such as accepting zero-confirmation
transaction are not applicable [23]. The customers are assumed
to register once to the system (similar to a credit card issuance
processes) and then visit shops multiple times.

We assume that merchants have permanent and fairly
reliable Internet connections. Customers are not expected to be
online constantly or periodically (initial online registration is
sufficient). At the time of shopping, customers and merchants
can communicate over the Internet or using a local channel,
such as a smartphone NFC or smart card APDU interface.

Blockchain. We assume a permissionless blockchain that has
sufficient throughput, but high latency (see motivation). The
blockchain supports smart contracts. We use Ethereum as a ref-
erence platform throughout this work, but emphasize that our
solution is compatible with most permissionless blockchains
with smart contracts [24]–[26]. To ensure compatibility with
existing systems like Ethereum, we assume that smart contracts
have access to the current state of the blockchain, but not to
all the past transactions.

Adversary. The main goal of this paper is to enable secure
and fast payments. Regarding payment security, we consider
a strong adversary who controls an arbitrary number of cus-
tomers and all other merchants besides the target merchant who
accepts a fast payment. The adversary also controls the net-
work connections between customers and merchants but cannot
launch network-level attacks such as node eclipsing [27].
The adversary cannot violate the consensus guarantees of
the blockchain, prevent smart contract execution, or violate
contract integrity.

For payment liveness, we additionally require that suffi-
ciently many merchants are responsive (see Section V-B).

C. Limitations of Known Solutions

A prominent approach to enable fast payments on slow
permissionless blockchains is so called Layer-2 solutions
that move transaction processing off the chain and use the
blockchain only in case of dispute resolution and occasional
synchronization between the on-chain and off-chain states.
Here, we outline the main limitations of such solutions.
Section VIII provides more details on Layer-2 solutions and
their limitations.

Payment channels transfer funds between two parties. The se-
curity of such solutions is guaranteed by separate deposits that
must cover periodic expenditure in each individual channel. In
our “small shops” example with k = 100 merchants and an
average customer expenditure of e = $10, the customers would
need to deposit combined $1,000. In our “large retailers”
example with k = 100 merchants and expenditure of e = $250,
the total deposit is $25,000. Payment channels require periodic
deposit replenishment.

Payment networks address the above problem of having to
set up many separate channels by using existing payment
channels to find paths and route funds. Payments are possible
only when the necessary links from the source (customer) to
the destination (merchant) exist. However, payment networks
are unreliable, as guaranteeing the suitable links between all
parties is proven difficult [28]. Moreover, retail payments are
pre-dominantly one-way from customers to merchants, and
thus those links get frequently depleted, reducing the route
availability even further [29].

Payment hubs attempt to solve the route-availability problem
by having all customers establish a payment channel to a
central hub that is linked to all merchants. The main problem of
this approach is that the hub operator either has to be trusted or
it needs to place a very large deposit to guarantee all payments.
Since the required collateral is proportional to the number of
customers, in our large retailers example, a hub operator will
have to deposit $250M to support n = 1M customers with
an expenditure of e = $250. To cover the cost of locking in
such a large mount of funds, the operator is likely to charge
substantial payment fees.

Commit-chains aim to improve payment hubs by reducing
or eliminating operator collaterals. To do that, they rely on
periodic on-chain checkpoints that finalize multiple off-chain
transactions at once. While this improves throughput, it does
not reduce latency, as users still have to wait for the checkpoint
to reach finality on-chain [14], [30]. Other commit-chain
variants enable instant payments, but require equally large
collaterals as payment hubs. Additionally, in such variants
users need to monitor the checkpoints (hourly or daily) to
ensure that their balance is represented accurately [14], [31].
We focus on retail setting where customers do not have to be
constantly or periodically online (recall Section II-B), and thus
cannot be expected to perform such monitoring.

Side-chains rely on a small number of collectively trusted
validators to track and agree on pending transactions. Typ-
ically, consensus is achieved using Byzantine-fault tolerant
protocols [32] that scale up to a few tens of validators and
require 2/3 of honest validators. Thus, side-chains contradict
one of the main benefits of permissionless blockchains, the
fact that no trusted entities are required. Additionally, BFT
consensus requires several communication rounds and has high
message complexity.

D. Requirements

Given these limitations of previous solution, we define the
following requirements for our work.

3

v R1: Fast payments without trusted validators. Our solu-
tion should enable payment recipients such as merchants
to accept fast payments assuming no trusted validators.

v R2: Practical collaterals for large deployments. Collat-
erals should be pratical, even when the system scales
for large number of customers or many merchants. In
particular, the customer collaterals should only depend
on their own spending, not the number of merchants.
The entities that operate the system (in our solution, the
merchants) should deposit an amount that is proportional
to their sales, not the number of customers.

v R3: Cheap payment processing. When deployed on top of
an existing blockchain system such as Ethereum, payment
processing should be inexpensive.

III. SNAPPY OVERVIEW

In our solution, Snappy, customer collaterals are held by a
smart contract called Arbiter and enable merchants to safely
accept payments before a transaction reaches finality on the
chain. If a pending transaction does not get confirmed on
the chain (double spending attack), the victim merchant can
recover the lost funds from the customer’s collateral.

For any such solution, it is crucial that the total value of a
customer’s pending transactions never exceeds the value of its
collateral. This invariant is easy to ensure in a single-merchant
setup by keeping track of the customers’ pending transactions.
However, in a retail setting with many merchants, each individ-
ual merchant does not have a complete view of each customer’s
pending payments, as each customer can perform purchases
with several different merchants simultaneously.

A natural approach to address this problem is to assume
that the merchants collaborate and collectively track pending
transactions from all customers (see Figure 2 (right)). Below,
we outline simple approaches to realize such collaboration and
point out their drawbacks that motivate our solution.

A. Strawman Designs

Transaction broadcasting. Perhaps the simplest approach
would be to require that all merchants broadcast all incoming
payments, so that everyone can keep track of the pending trans-
actions from each customer. Such a solution would prevent
customers from exceeding their collateral’s value, but assumes
that all the merchants are honest. A malicious merchant,
colluding with a customer, could mislead others by simply
not reporting some of the customer’s pending payments. The
customer can then double spend on all of its pending trans-
actions, thus enabling the colluding merchant to deplete its
collateral and prevent other merchants from recovering their
losses. The same problem would arise also in cases where
a benign merchant fails to communicate with some of the
merchants (e.g., due to a temporary network issue) or if the
adversary drops packets sent between merchants.

We argue that such transaction broadcasting might be ap-
plicable in specific settings (e.g., large retailers that trust each
other and are connected via high-availability links), but it fails
to protect mutually-distrusting merchants such as small shops
or restaurants, and is unsuited to scenarios where mutually-
trusting merchants cannot establish expensive links.

Unanimous approval. Alternatively, merchants could send
each incoming transaction to all other merchants and wait
until each of them responds with a signed approval. While
some of the merchants may act maliciously and equivocate,
rational merchants holding pending transactions from the same
customer will not, as this would put their own payments at risk.
The Arbiter contract would refuse to process any claims for
losses, unless the merchant can provide approval statements
from all other merchants. Such unanimous approval prevents
the previous attack (assuming rational actors), but it suffers
from poor liveness. Even if just one of the merchants is
unreachable, the system cannot process payments.

BFT consensus. A common way to address such availability
concerns is to use Byzantine-fault tolerant protocols. For
example, the merchants could use a BFT consensus such
as [32] to stay up to date with all the pending payments. Such
a solution can tolerate up to 1/3 faulty (e.g., non-responsive)
merchants and thus provides increased availability compared
to the previous design. However, this solution has all the
limitations of side-chains (recall Section II-C). In particular,
BFT consensus requires 2/3 trusted validators and several
rounds of communication. Therefore, BFT side-chains are not
ideal even in the case of mutually-trusting merchants.

B. Snappy Main Concepts

To overcome the problems of the above strawman designs,
we use two primary techniques: (a) majority approval and (b)
merchant collaterals, such that fast payments can be accepted
safely even if all the merchants are untrusted and some of them
are unreachable.

The use of majority approval generates non-deniable evi-
dence about potentially misbehaving merchants. Together with
merchant collaterals, this enables attack victims to recover their
losses, in case a merchant colludes with a malicious customer.
In an example attack, a malicious customer sends transaction
τ to a victim merchant and τ ′ to a colluding merchant, and
simultaneously double spends both τ and τ ′. The colluding
merchant claims the lost value from the customer’s collateral
which exhausts it and prevents the victim merchant from
recovering losses from the customer’s collateral. However, the
victim can use the colluding merchant’s signature from the
majority approval process as evidence and reclaim the lost
funds from the merchant’s collateral. Given these main ideas,
next we provide a brief overview of how Snappy works.

Collaterals. To register in the Snappy system, each customer
deposits a collateral to Arbiter’s account (see “Registration”
in Figure 1 (left)). The value of the collateral is determined
by the customer, and it should suffice to cover its expenditure
et during the blockchain latency period (e.g., et = $100 for 3
minutes in Ethereum).

Since merchants are untrusted, they also need to deposit
a collateral. The size of the merchant collateral depends on
the total value of sales that all participating merchants process
within the latency period. For example, for a consortium of
k = 100 small shops that process pt = 6 payments of et = $5
on average during the latency period, a collateral of $3,000
will suffice. In a deployment with k = 100 larger retailers,
where each one handles pt = 15 purchases of et = $100 (on
average) within the latency period, each merchant will need

4

Fig. 1 (left): Flow of funds. Customers and merchants deposit
collaterals to the arbiter smart contract. Payments flow from customers
to merchants through the arbiter. In case of attack, the victim merchant
can recover any losses from the arbiter.

Fig. 2 (right): Example deployment where each merchant operates
one statekeeper. Customers make payments towards merchants, who
consult a majority of the statekeepers before accepting them.

to deposit $150,000 [21], [22]. We acknowledge that this is a
significant deposit, but feasible for large corporations.

Payment approval. After registering, a customer can initiate
a payment by sending a payment intent to a merchant together
with a list of its previous approved but not yet finalized
transactions. The merchant can verify that the provided list
is complete, by examining index values that are part of each
Snappy transaction. If the total value of intended payment and
the previously approved payments does not exceed the value
of the customer’s collateral, the merchant proceeds.

To protect itself against conflicting Snappy transactions
sent to other merchants simultaneous, the merchant collects
approval signatures from more than half of the participat-
ing merchants, as shown in Figure 2 (right). Such majority
approval does not prevent malicious merchants from falsely
accepting payments, but provides undeniable evidence of such
misbehavior that the merchant can later use to recover losses
in case of an attack. In essence, a merchant m signing a
transaction τ attests that “m has not approved other trans-
actions from the same customer that would conflict with τ”.
Thus, m needs to check each transaction against those it has
signed in the past. The merchant who is about to accept a
payment also verifies that the approving merchants have each
sufficient collateral left in the system to cover the approved
payment. Once these checks are complete, the merchant can
safely accept the payment.

The customer construct a complete Snappy payment such
that the payment funds are initially sent to Arbiter that logs
the approval details into its state and after that forwards the
payment value to the receiving merchant (see “Payment” in
Figure 1 (left)). We route all payments through the Arbiter
contract to enable the Arbiter to perform claim settlement in
blockchain systems like Ethereum where smart contracts do
not have perfect visibility to all past transactions (recall Sec-
tion II-B). If future blockchain systems offer better transaction

visibility to past transactions for contracts, payments can be
also routed directly from the customers to the merchants.

Settlements. If the transaction does not appear in the
blockchain after a reasonable delay (i.e., double-spending
attack took place), the victim merchant can initiate a settlement
process with the arbiter to recover the lost funds (“Attack in
Figure 1 (left)). The Arbiter uses the logged approval evidence
from its state to determine who is responsible for the attack,
and it returns the lost funds to the victim merchant either from
the collateral of the customer or the misbehaving merchant
who issued false approval.

Separation of statekeeping. So far, we have assumed that
payment approval requires signatures from merchants who
track pending transactions. While we anticipate this to be the
most common deployment option, for generality and separation
of duties, we decouple the tracking and approval task of
merchants into a separate role that we call statekeeper. For the
rest of the paper, we assume a one-to-one mapping between
merchants and statekeepers, as shown in Figure 2 (right) and in
Appendix B we discuss alternative deployment options. When
there are an identical number of merchants and statekeepers,
the value of statekeepers’ collaterals is determined as already
explained for merchant collaterals.

Incentives. There are multiple reasons why merchants would
want to act as statekeepers. One example reason is that it al-
lows them to join a Snappy consortium, accept fast blockchain
payments securely and save on card payment fees. To put the
potential saving into perspective, considering our large retail
stores example and the common 1.5% card payment fee (and a
cost of $0.16 per Snappy payment). In such a case, a collateral
of $150,000 is amortized in ∼37 days. Potential free-riding
by a consortium member could be handled by maintaining a
ratio of approvals made and received for each merchant and
excluding merchants who fall below a threshold.

Another example reason is that the merchants could estab-
lish a fee-based system where each approver receives a small
percentage of the transaction’s value to cover the operational
cost and the collateral investment needed to act as a state-
keeper.

IV. SNAPPY DETAILS

In this section, we describe the Snappy system in detail. We
instantiate it for Ethereum, but emphasize that our solution
is not limited to this particular blockchain. We start with
background on aggregate signatures, followed by Snappy data
structures, registration, payment and settlement protocols.

A. Background on BLS Signatures

To enable signature aggregation for reduced transaction size
and efficient transaction verification, we utilize the Boneh-
Lynn-Shacham (BLS) Signature Scheme [33], along with
extensions from [34], [35]. BLS signatures are built on top
of a bilinear group and a cryptographic hash function H :

5

Field Symbol Type Description

To τto 160-bit Arbiters addr
From τf 160-bit Customer’s addr
Value τv Integer Transferred funds
ECDSA Sig. v, r, s 256-bits Tx signature triplet.

Data
↪→ Operation τop String e.g., “Pay”, “Claim”
↪→ Merchant τm 160-bit Merchant’s address
↪→ Payment Index τi Integer Monotonic counter
↪→ Signatures τA 512-bits Aggregate signature
↪→ Quorum τq 256-bits Approving parties

TABLE I: Snappy transaction τ format. All Snappy-specific infor-
mation is encoded into the Data field of Ethereum transactions.

{0, 1}∗ 7→ G. A bilinear group bp = (p,G,H,GT , e, g, h) 1

consists of cyclic groups G, H, GT of prime order p, generators
g, h that generate G and H respectively, and a bilinear map
e : G × H → GT such that: The map is bilinear, i.e., for
all u ∈ G and v ∈ H and for all a, b ∈ Zp we have
e(ua, vb) = e(u, v)ab; The map is non-degenerate, i.e., if
e(u, v) = 1 then u = 1 or v = 1. There are efficient algorithms
for computing group operations, evaluating the bilinear map,
deciding membership of the groups, and sampling generators
of the groups.

The main operations are defined as follows:

v Key generation: A private key xj sampled from Zp, and
the public key is set as vj = hxj . A zero-knowledge proof
of knowledge πj for xj can generated using a Fischlin
transformed sigma protocol [37] or by signing the public
key with its private counterpart.

v Signing: Given a message m, the prover computes a
signature as σj = H(m)xj .

v Aggregation: Given message m and signatures
σ1, . . . , σn, an aggregated signature A is computed
as A =

∏n
j=1 σj .

v Verification: The verifier considers an aggregated signa-
ture to be valid if e (A, h) = e

(
H(m),

∏n
j=1 vj

)
.

B. Data Structures

Transactions. All interaction with the Arbiter smart contract
are conducted through Ethereum transactions. We encode the
Snappy-specific information in the to Data field, as shown in
Table I. Each Snappy transaction τ carries an identifier of the
operation type τop (e.g., “Payment”, “Registration”, “Claim”).
Moreover, transactions marked as “Payments” also include
the address of the transacting merchant τm, a monotonically
increasing payment index τi,2 an aggregate τA of the state-
keepers’ approval signatures, and a vector of bits τq indicating

1Boneh et al.’s scheme utilises specific bilinear pairings where there is
an efficiently computable isomorphism between G and H which are not
implemented over Ethereum. However, Boneh et al. [36] observed that the
proof of security does still apply with respect to the more commonly used
pairings under a stronger cryptographic assumption. We assume the signature
scheme is implemented with regards to bilinear groups with no known
isomorphism.

2We note that the Snappy transaction index τi is a separate field from
the standard Ethereum transaction nonce. Although both are monotonically
increasing counters, the Snappy index counts payments inside the Snappy
system, while the Ethereum nonce counts all transactions by the same user,
also outside the Snappy system.

Field Symbol Description

Customers C Customers
↪→ entry C[c] Customer c entry
↪→ Collateral C[c].colc Customer’s collateral
↪→ Clearance C[c].cl Clearance index
↪→ Finalized C[c].D Finalized Transactions
↪→ entry C[c].D[i] Entry for index i
↪→ Hash C[c].D[i].H(τ) Tx Hash
↪→ Signatures C[c].D[i].τA Aggregate signature
↪→ Quorum C[c].D[i].τq Approving parties
↪→ Bit C[c].D[i].b Sig. verified flag

Merchants M Merchants
↪→ entry M [m] Merchant m entry

Statekeepers S Statekeepers
↪→ entry S[s] Statekeeper s entry
↪→ Allocation S[s].cols[m] Value per merchant

TABLE II: Arbiter’s state. The arbiter smart contract maintains a
record for each customer, merchant and statekeeper.

which statekeepers contributed to the aggregate signature. τv
denotes the amount of funds in τ.

Arbiter state. The Arbiter maintains state, shown in Table II,
that consist of the following items: a Customers dictionary C
that maps customer public keys to their deposited collateral
colc, a clearance index cl, and a dictionary D of finalized
transactions. D maps transaction index values to tuples that
contain the hash of the transaction H(τ), τA, τq , and a bit b
indicating whether the signature has been verified.

Customer state. Each customer c maintains an ordered list L
with its past approved transactions. We denote Sc the subset
of those transactions from L that are still pending inclusion in
the blockchain (Sc ⊆ L).

Statekeeper state. Each statekeeper maintains a list P of all
the payment intents it has approved for each customer c.

Merchant state. Each merchant maintains a table R[s] indi-
cating how much collateral of each statekeeper s it can claim.
Initially, R[s] = cols/k for each statekeeper.

C. Registration

Customers can join and leave the system at any time, but the set
of merchants and statekeepers is fixed after the initialization
(in Appendix B we discuss dynamic sets of merchants and
statekeepers).

Merchant registration. Merchant m submits a registration
request which is a transaction that calls a function of the
Arbiter contract. Once executed, the Arbiter adds a new entry
M [m] to its state, where m = τf is the merchant’s account
address (public key).

Customer registration. Customer c sends a transaction to the
Arbiter with the funds that it intents to deposit for its collateral
colc. The Arbiter contract creates a new customer entry C[c],
sets the customer’s collateral to τv , and initializes the clearance
index to cl = 0. The Arbiter also initializes a new dictionary
C[c].D to log the registered customer’s payments.

6

Fig. 3: Payment-approval protocol. Customer c initiates a payment
to merchant m, who requests a majority approval from statekeepers
s1, ..., sl. Merchant m aggregates the received responses and forwards
them back to customer c, who creates and broadcasts the final
transaction τ transferring the funds to the merchant.

Statekeeper registration. The registration process for state-
keepers is similar to that of customers. However, a state-
keeper’s registration includes also a proof of knowledge for
their BLS private key xj to prevent rogue key attacks (see [38]
for details). The proof is included in the data field of the
registration transaction and is verified by the Arbiter. Addi-
tionally, the statekeeper may also define how its collateral is
to be distributed between the merchants. The maximum value
each merchant can claim is S[s].d. We consider the case where
each statekeeper collateral cols is equally allocated between
all k merchants, and thus each merchant can recoup losses up
to cols/k from statekeeper s.

D. Payment Approval

The payment-approval protocol proceeds as follows (Figure 3):

1 Payment initialization. To initiate a payment, customer
c creates a payment intent INTc and sends it to merchant
m, together with its state Sc that contains a list of already
approved but still pending payments. The intent carries all the
details of the payment (e.g., sender, recipient, amount, index)
and has the same structure as normal transaction, but without
the signatures that would make it a complete valid transaction.

2 Customer evaluation. Upon reception, merchant m checks
that all the index values in the interval {1 . . . INTc[i]} appear
either in the blockchain as finalized transactions or in Sc as
approved but pending transactions. If this check is successful,
m proceeds to verify that colc suffices to compensate all of the
currently pending transactions of that customer (i.e., colc ≥∑
Sc + INTc[v]). Finally, merchant m verifies the approval

signatures of the customer’s transactions both in Sc and in the
blockchain.

3 Payment approval. Next, the payment intent must be
approved by a majority of the statekeepers. The merchant

forwards INTc to all statekeepers, who individually compare
it with c’s payment intents they have approved in the past
(list P in their state). If no intent with the same index τi is
found, statekeeper s appends INTc in P , computes a BLS
signature σs over INTc, and sends σs back to the merchant.
If the statekeeper finds a past approved intent from c with the
same index value, it aborts and notifies the merchant.

4 Statekeeper evaluation. Upon receiving the approval sig-
natures from a majority of the statekeepers, merchant m uses
R[s] to check that each approving statekeeper s has sufficient
collateral remaining to cover the current payment value τv .
In particular, the merchant verifies that none of the approv-
ing statekeepers have previously approved pending payments,
whose sum together with the current payment exceeds R[s].
(Merchants can check the blockchain periodically and update
their R depending on the pending payments that got finalized
on-chain.) Recall that initially R[s] is set to cols/k for each
statekeeper, but in case m has filed a settlement claims in the
past against s, the remaining collateral allocated for m may
have been reduced. This check ensures that in case one or
more statekeepers equivocate, m is able to recover its losses
in full.

5 Signature aggregation. If the statekeepers evaluation suc-
ceeds, m aggregates the approval signatures σ1, . . . , σd(k+1)/2e

(i.e, A =
∏d(k+1)/2e
j=1 σj) and sends to customer c the resulting

aggregate A and a bit vector q indicating which statekeepers’
signatures were included in A. Otherwise, if one or more
statekeepers do not have sufficient collateral to approve INTc,
the merchant can either contact additional statekeepers or
abort.

6 Transaction finalization. The customer signs and returns to
m a transaction τ with the details of INTc, as well as τto =
Arbiter, τm = m, τA = A and τq = q.

7 Payment acceptance. Merchant m first verifies the details
and the signatures of the transaction τ, and then hands over
the purchased goods or service to the customer. Finally, m
broadcasts τ to the blockchain network. (Merchants have
no incentive to withhold payments, but if this happens, the
customer can simply broadcast it after a timeout.)

8 Payment logging. Once τ is added in a block, the Arbiter
records the payment and forwards its value to merchant m
(Algorithm 1). To keep the payments inexpensive in Ethereum,
our smart contract does not verify the aggregate signature τA
during logging. Instead, it performs the expensive signature
verification only in cases of disputes, which are expected to
be rare. In Section V, we show that such optimization is safe.

E. Claim Settlement

If a transaction does not appear in the blockchain within
a reasonable time, the affected merchant may inspect the
blockchain to determine the cause of the delay. There are three
possible reasons for a transaction not getting included in the
blockchain in a timely manner:

1. Benign congestion. A transaction may be of lower priority
for the miners compared to other transactions awarding
higher miner fees.

7

Algorithm 1: Record-and-Forward. Arbiter records the transac-
tion and forwards the payment value to the merchant.

Actor : Arbiter (smart contract)
Input : Snappy transaction τ
Output : None

1 c← τf
2 if c ∈ C and τi 6∈ C[c].D then
3 h← H(τf , τto, τv , τi)
4 C[c].D[τi]← 〈h, τA, τq , 0〉
5 Send(m, τv) . Forward the tx’s funds to merchant
6 else
7 Send(s, τv) . Return funds to sender

Algorithm 2: Claim-Settlement. Arbiter processes settlement
claim using customers’ and statekeepers’ collaterals.

Actor : Arbiter (smart contract)
Input : Pending transaction τp

Ordered list of pending transactions Tp

List of conflicting transaction tuples Tcnfl (optional)
Output : None

1 if Verify(τpA) then
2 r ← Claim-Customer(τp,Tp)
3 if r > 0 then
4 Claim-Statekeeper(τp,Tcnfl, r)
5 c← τpf
6 C[c].D[τi]← 〈h, τA, τq , 1〉 . Log tx as processed

2. Conflicting transaction. Another transaction by the same
customer prevents the transaction from being included
in the blockchain (doubles-pending attack). In Ethereum,
two transactions from the same customer conflict when
they share the same nonce value [1].

3. Customer’s account depletion. A recent transaction left
insufficient funds in the customer’s account. Ethereum
processes the transactions of each customer in increasing
nonce order, and thus transactions with greater nonce
values may be invalidated by those preceding them.

In the first case, the merchant must simply wait and check
again later. In the latter two cases, the merchant can initiate a
settlement claim to recoup the lost value τv . Such claims are
sent to the Arbiter and include: (1) the pending transaction τp
for which the merchant requests settlement, (2) a list Tp with
all preceding (lower index) and pending Snappy transactions,
and (3) optionally a list of conflicting transaction tuples Tcnfl.
The merchant can construct Tp from the Sc (received at
payment initialization) by removing the transactions that are
no longer pending (Tp ⊆ Sc).

Settlement overview. Algorithm 2 describes how the Arbiter
executes settlement. First, it checks the majority approval by
verifying the BLS signature aggregate τpA. Then, it tries to
recoup the transaction value τpv from the customer’s collateral
using the Claim-Customer sub-routine. If the collateral does
not suffice to cover the transaction value τv , it proceeds to
claim the remaining amount from the collateral of the equiv-
ocating statekeeper using the Claim-Statekeeper sub-routine.
Finally, the contract logs τi so that no further claims from the
customer’s collateral can be made for the same index τi.

Claim-Customer sub-routine is shown in Algorithm 3. First
(lines 3-7), it verifies the signatures of preceding finalized
transactions that have not been verified already (recall that sig-
natures are not verified during Record-and-Forward to reduce

Algorithm 3: Claim-Customer. Arbiter recovers lost funds from
the customer’s collateral or returns the remaining amount.

Actor : Arbiter (smart contract)
Input : Pending transaction τp

Preceding pending transactions Tp

Output : Residual r or ⊥
1 c← τpf
2 I∗ ← C[c].D . Pass by reference
/* Verify signatures of preceding non-pending

txs. */
3 for ∀{i ∈ I∗|I∗[i].b = 0} do
4 if Verify(I∗[i]A) then
5 I[i].b← 1
6 else
7 del I∗[i] . Past tx had no approval.
/* Any pending & preceding txs missing? */

8 if ∃ i ∈ {1 . . . τpi−1} such that i 6∈ I∗ and i 6∈ Tp then
9 return ⊥
/* Verify signatures of pending preceding txs.

*/
10 if !Verify(Tp) then
11 return ⊥

/* Process claim. */
12 if τpi 6∈ I∗ then
13 col∗c ← C[c].colc . Pass by reference
14 cov ← max(0,col∗c −

∑
Tp) . Max claimable amount

15 ρ← min(cov, τpv)
16 colc ← col∗c − ρ
17 Send(τpm, ρ)
18 r← τpv − ρ
19 return r
20 else
21 return τv . Statekeeper equivocated

payment processing cost). Subsequently, the contract checks
that the list Tp contains all the pending transactions preceding
τp (lines 8-9) and verifies their signatures (lines 10-11). For
every transaction that is deleted (line 7), the merchant should
have included another transaction with the same index and
valid approval signature in Tp. These two checks ensure that
the merchant did its due diligence and verified the approval
signatures of preceding pending and non-pending transactions
during ”Customer evaluation” step (Section IV-D).

After that, the contract checks for another valid transaction
with the same index, and if there was it returns τpv to its parent
process (line 21). In this case, the losses should be claimed
from the equivocating statekeepers’ collaterals. Otherwise, the
arbiter compensates the merchant from the customer’s collat-
eral colc. In case the customer’s collateral does not suffice
to fully recoup τpv , then the algorithm returns the remaining
amount (line 19). This amount is then used in further claims
against the statekeepers.

The Snappy system supports arbitrarily many past transac-
tions. However, in practice, an expiration window can be used
to reduce the computational load of verifying the signatures of
preceding transactions. For example, a 24-hour window would
allow sufficient time to accept payments and claim settlements
if needed, and at the same time keep the number of past-
transaction verifications small. Such time window would also
reduce the storage requirements of the Arbiter smart contract,
as it would only need to store the most recent transactions
from each user in C[c].D, instead of all the past transactions.
Note that valid payments will appear in the blockchain within
a few minutes and thus the operators’ collateral will be quickly

8

Algorithm 4: Claim-Statekeeper. Arbiter sends lost funds from
the misbehaving statekeepers’ collaterals to the affected merchant.

Actor : Arbiter (smart contract)
Input : Residual r

Pending Transaction τp
Conflicting transaction tuples Tcnfl

Output : None
1 left← r
2 while left > 0 and Tcnfl 6= ∅ do
3 〈τ ′, τ ′′〉 ← Tcnfl.pop() . Tuple of txs with the same idx
4 if Verify(τ ′) and Verify(τ ′′) and
5 τ ′i ≤ τ

p
i and τ ′′i ≤ τ

p
i and τ ′ 6= τ ′′ then

6 sk ← FindOverlap(τ ′, τ ′′) . Find who equivocated
7 if sk 6= ∅ then
8 δ ← |τ ′v − τ ′′v |
9 col∗sk ← S[sk].colsk[τ

p
m] . Pass by reference

/* Is there enough collateral left?
*/

10 if col∗sk[m]− δ ≥ 0 then
11 col∗sk[m]← col∗sk[m]− δ
12 left← left− δ
13 ρ← min(τpv , |τpv − left|)
14 Send(τpm, ρ)

freed to be allocated to other transactions.

Claim-Statekeepers sub-routine is shown in Algorithm 4. It
is executed in cases where the customer’s collateral does not
suffice to fully recoup the value of the transaction τpv for which
settlement is requested. In this case, the arbiter attempts to
recover the lost funds from the equivocating statekeepers.

The Arbiter iterates over the tuples of conflicting (and
preceding) transactions until τpv has been fully recovered or
there are no more tuples to be processed (line 2). For each of
those tuples, the Arbiter does the following: First, it verifies the
approval signatures of the two transactions, checks that the two
transactions precede τp and that they are not identical (lines 4-
5). Then, it uses FindOverlap() based on bit strings τq of
processed transactions to identify the equivocating statekeepers
(line 6). Finally, it computes the amount that the merchant was
deceived for (|τ ′v − τ ′′v |) and subtracts it from the collateral of
one of the statekeepers (lines 8-11).

We only deduct the missing funds from one of the equivo-
cating statekeepers in each tuple, as our goal is to recoup the
τpv in full. However, Snappy can be easily modified to punish
all the equivocating statekeepers. Recall that each merchant
is responsible for ensuring that the collateral allocated by
each statekeeper for them, suffices to cover the total value
of pending payments approved by that statekeeper (line 10).

F. De-registration

Customers can leave the Snappy system at any point in
time, but in the typical usage de-registrations are rare opera-
tions (comparable to credit card cancellations). The process is
carried out in two steps, first by clearing the customer’s pend-
ing transactions and subsequently by returning any remaining
collateral. This two-step process allows enough time for any
pending settlements to be processed before the collateral is
returned to the customer.

The customer submits a clearance request that updates the
clearance field C[c].cl to the current block number. At this
point, the customer’s account enters a clearance state that lasts

for a predetermined period of time (e.g., 24 hours). During this
time, customer c can no longer initiate purchases, but colc can
still be claimed as part of a settlement. Once the clearance is
complete, the customer can withdraw any remaining collateral
by submitting a withdrawal request. The Arbiter checks that
enough time between the two procedures has elapsed and then
returns the remaining colc to customer c.

V. SNAPPY ANALYSIS

In this section, we analyze the safety and liveness proper-
ties of Snappy.

A. Safety

First we prove that a merchant who follows the Snappy
protocol to accept a fast payment is guaranteed to receive
the full value of the payment (our Requirement R1) given the
strong adversary defined in Section II-B.

Definitions. We use BC to denote all the transactions in the
chain, and BC[c] to refer to the subset where c is the sender. We
say that a customer’s state Sc is compatible with a transaction
τ when all τ ′ such that τ ′ /∈ BC and τ ′i < τi, τ ∈ Sc and∑
Sc + τv ≤ colc. Less formally, compatibility means that

Sc should include all of c’s pending Snappy transactions that
precede τ, while their total value should not exceed colc.

Theorem 1. Given a customer state Sc that is compatible with
a transaction τ approved by a majority of the statekeepers with
sufficient collaterals, merchant τm is guaranteed to receive the
full value of τ.

Proof: A Snappy transaction τ transfers funds from cus-
tomer c to merchant m. Here, we use colc to denote the value
of the c’s collateral when τ was approved, and col′c to denote
the collateral’s value at a later point in time. Note that col′c
is potentially smaller than colc as several settlement claims
may have been processed in the meantime.

To prove Theorem 1, we consider both the case where τ
is included in the blockchain BC, and the case it is not. In the
former case (τ ∈ BC), merchant m is guaranteed to receive
the full payment value τv , as the adversary cannot violate the
integrity of the Arbiter smart contract or prevent its execution.
Once transaction τ is in the blockchain, the Arbiter contract
executes Record-and-Forward (Algorithm 1) that sends the full
payment value τv to merchant m.

In the latter case (τ 6∈ BC), the merchant sends a settlement
claim request that causes the Arbiter contract to execute Claim-
Settlement (Algorithm 2). There are now two cases to consider:
either col′c suffices to cover τv or it does not. In the first
case (τv ≤ col′c), merchant m can recover all lost funds
from col′c. For this process, m needs to simply provide the
approved τ and the list of Snappy transactions from customer
c that preceded τ and are still pending. The Arbiter contract
verifies the validity of the inputs and sends the payment value
τv to merchant m from col′c. In the latter case (τv > col′c),
merchant m can still recoup any lost funds, as long as Sc
was compatible with τ and m followed the Snappy payment
approval protocol and verified before payment acceptance that
the approving statekeepers’ remaining collaterals R[s] suffice

9

to cover τv and all other pending transactions previously
approved by the same statekeeper.

According to Lemma 1, if τv > col′c, then there are more
than one approved transactions from customer c with the same
index value τi. As shown by Proposition 1, for this to happen,
one or more statekeepers need to approve two transactions with
the same index (i.e., equivocate). The arbiter contract can find
the equivocating statekeepers by comparing the quorum bit
vectors τq and τ ′q from the conflicting transaction tuples, and
recoups all lost funds from their collaterals.3

In Snappy, it is the responsibility of the merchant to
verify that each statekeeper who approves a payment has
sufficient collateral remaining. Before payment acceptance, the
merchant verifies that the sum of all approved but pending
payments and the current payment are fully covered by R[s]
which is initially cols/k but can be reduced by previous
settlement claims. Since one merchant cannot claim collateral
allocated for another merchant, the merchant is guaranteed to
be able recover the full payment value, even if one or more
statekeepers equivocate to several merchants simultaneously.

Lemmas. We now provide proofs for Lemma 1 and Proposi-
tion 1 used above.

Lemma 1. Let Sc be state of customer c that is compatible
with a transaction τ, if at any point col′c < τv and τ has not
been processed, then there exists an approved τ ′ such that τ ′ 6∈
Sc, and τ ′ has the same index either with τ or a transaction
in Sc.

Proof: Let col′c be the funds left in the customer’s
collateral after a set of claims Π were processed i.e., col′c =
colc −

∑
Π. Let’s now assume that col′c < τv , but there is

no τ ′ that (1) is not in Sc and (2) has the same index with τ
or with a transaction in Sc. In other words, let’s assume that
no two approved transactions have the same index i.

From τv > col′c, it follows that
∑

Π + τv > colc. By
definition

∑
Sc + τv ≤ colc. Thus, it follows that:∑
Sc + τv <

∑
Π + τv ⇒

∑
Sc <

∑
Π

From this, we derive that Π 6⊂ Sc. Since, Π is not a subset of
Sc, there is at least one transaction τ ′ ∈ Π such that τ ′ 6∈ Sc.
Sc is compatible with τ, and thus Sc contains all the pending
transactions up to τi. As a result, a pending τ ′ that is not
included in Sc must have τ ′i greater than τi. Note that if
τ ′ is not pending, the Arbiter contract will not process the
settlement claim (line 12 in Algorithm 3). Thus, τi < τ ′i .

According to Algorithm 3, any claim for τ ′ should include
all transactions preceding τ ′ that are still pending. Since, τ is
pending and τi < τ ′i , the claim should also include τ. However,
Line 14 in Algorithm 3 ensures that enough funds are left in
the customer’s collateral to cover all the preceding-pending
transactions. This covers τ too, and contradicts our starting
premise τv > col′c. We have so far shown that:

3Lines 8-9 in the Claim-Customer sub-routine (Algorithm 3) force any actor
who claims τv to publish a list with transactions that are pending and have
indices preceding τi. This enables other merchants to identify conflicting
transaction pairs, find the equivocating statekeepers and claim from their
collaterals.

(1) If col′c < τv , then the arbiter processed a claim for a
transaction τ ′ that is not included in Sc.

(2) The collateral will always suffice to cover τ, even if other
claims for transactions with greater index values (i.e.,
τ ′i > τi) are processed first.

From (1) and (2), it follows that τ ′i ≤ τi.
Proposition 1. For any two majority subsets M1 ⊆ S and
M2 ⊆ S, where S is the set of all the statekeepers, it holds
that M1 ∩M2 6= ∅.

Proof: The proof of this proposition follows directly from
the Pidgeonhole principle (or Dirichlet’s box principle) which
states that if n items are put in m containers for n > m then
at least one container contains multiple items.

No penalization of honest statekeepers. Above we showed
that an honest merchant who accepts a Snappy payment will
always receive his funds. Additionally, Snappy ensures that an
honest statekeeper cannot be penalized due to benign failures
such as network errors or crashes. As outlined in Section IV,
a merchant is penalized only if it approves two conflicting
transactions (same index, same customer). This simple policy
is sufficient to protect all honest merchants in the case of
benign failures.

Privacy Payment privacy is largely orthogonal to our solution
and inherited from the underlying blockchain. For example, if
Snappy is built on Ethereum, for most parts Snappy customers
and merchants receive the level of privacy protection that
Ethereum transactions provide. In Section VII, we discuss
privacy in more detail.

B. Liveness

Next, we explain the liveness property of Snappy. Payment
processing is guaranteed when at least d(k + 1)/2e of the
statekeepers are reachable and responsive. If we assume that
all the statekeeping nodes are equally reliable then each one of
them should have an availability of only d(k+1)/2e. We note
that Snappy ensures safety and liveness under slightly different
conditions. In that regard Snappy is similar to many other
payment systems where liveness requires that the payment
processor is reachable but the same is not needed for payment
safety.

VI. SNAPPY EVALUATION

In this section we evaluate Snappy and compare it with
previous solutions.

A. Latency

In Snappy, the payment approval latency depends on two
factors: (a) the number of approving statekeepers and (b) the
speed/bandwidth of the network links between the merchants
and the statekeepers. The number of customers and merchants
has no effect on the approval latency and its impact on the
collateral size is discussed in Section VI-B.

To evaluate our Requirement R1 (fast payments), we sim-
ulated a setup with several globally-distributed statekeepers
and merchants running on Amazon EC2 instances. Both the

10

statekeepers and the merchants were implemented as multi-
threaded socket servers/clients in Python 3.7 and used low-end
machines with 2 vCPUs and 2 GB of RAM. We distributed
our nodes in 10 geographic regions (4 different locations in
the US, 3 cities in the EU, and 3 cities in the Asia Pacific
region).

As seen in Figure 4, we tested the payment approval latency
for different numbers of statekeepers and various rates of
incoming requests. In our first experiment, we initialized 100
merchants who collectively generate 1,000 approval requests
per second. We observe that for smaller consortia of up to
40 statekeepers (i.e., at least 21 approvals needed), Snappy
approves the requests within 300ms, while larger consortia
require up to 550ms on average. This shows that the approval
latency increases sub-linearly to the number of statekeepers
and experimentally validates the low communication com-
plexity of Snappy. In particular, the latency doubles for a
5-fold increase in the consortium’s size i.e., 40 statekeepers
require ∼300ms to collectively approve a request while 200
statekeepers require ∼550ms. We also tested our deployment
for higher loads: 2,500 and 5,000 requests per second respec-
tively. Our measurements show a slightly increased latency due
to the higher resource utilization at the statekeeping nodes.
However, the relationship between the number of statekeepers
and the approval latency remains sub-linear. We observe, in
Figure 4, that the variance increases both with the number
of statekeepers and the throughput. However, in all cases the
payment approvals were completed in less than a second.

These results demonstrate the practicality of Snappy as it
remains under the 2-second approval latency mark that we
consider a reliable user experience benchmark [4]–[6]. The
measured latencies are consistent with past studies measuring
the round-trip times (RTT) worldwide [39] and within the
Bitcoin network [40], [41]. In particular, the majority of the
bitcoin nodes have an RTT equal or less to 500ms, while only
a tiny fraction of the network exhibit an RTT larger than 1,5
seconds.

An optimized Snappy deployment that uses more capable
machines will likely achieve better timings for the aforemen-
tioned loads and even larger statekeeping consortia. We did not
perform such performance optimizations, as Snappy is best
suited to deployments where the number of statekeepers is
moderate (e.g., k = 100). For larger consortia, the statekeeper
collaterals grow large (Section VI-D) and a centralized-but-
trustless deployment is preferable (Appendix B).

B. Scalability

We now evaluate how many customers and merchants
Snappy can handle (Requirement R2–large deployments).

Regarding the number of customers, the only scalability
issue is that the recent transactions of each customer (e.g., past
24 hours) need to be recorded to the Arbiter’s state. Thus,
its storage needs grow linearly to the number of customers.
Since Ethereum contracts do not have a storage limit, our
implementation can facilitate hundreds of thousands or even
millions of customers. In blockchain systems that allow smart
contracts to examine past transactions, there is no need for
the Arbiter to log transactions into the contract’s state and the
required storage is reduced significantly.

Fig. 4: Payment approval latency. Payment approval latency for
varying rates of incoming approval requests that each corresponds to
one purchase.

As shown in the previous section, Snappy can easily
support 100-200 statekeeping merchants which is the intended
usage scale of our solution. Moreover, due to the low commu-
nication complexity of our protocol, an optimized deployment
could also support a few thousand statekeeping merchants with
approval latency of less than 4 seconds. However, in cases
of very large deployments with several thousands merchants,
it is preferable to allow merchants to decide if they want to
deposit a collateral and perform statekeeping tasks or simply be
able to receive Snappy payments. Such a deployment remains
trustless towards the statekeeping merchants and decentralized
(but not fully), while it can support a much larger number of
non-statekeeping merchants. This design is further discussed
in Appendix B.

C. Processing Cost

To evaluate our Requirement R3 (cheap payments), we im-
plemented the Arbiter smart contract in Solidity for Ethereum,
and measured the Ethereum gas cost of all Snappy operations.
Our cost evaluation corresponds to a case where merchants run
a Snappy instance non-profit. Joining a non-profit consortium
allows merchants to accept fast and safe payments without
having to pay fees to external entities such as card payment
processors. Additional fees may be charged in for-profit se-
tups. Table III summarizes our results and provides the USD
equivalents using the current conversion rate and a Gas price
(Gwei) of 7.8.

Registration cost. The one-time registration cost for mer-
chants and customers is very low (67, 000 Gas that equals to
$0.06), while statekeepers have to pay a slightly increased cost
($0.48), due to verification of the proof of knowledge for the
statekeeper’s BLS private key to prevent rogue key attacks [38].

The cost of the collateral clearance and withdrawal opera-
tions for both customers and statekeepers are also inexpensive,
requiring $0.04 and $0.02.

Payment cost. The cost of a payment, in the absence of an
attack, is 169, 000 Gas ($0.16), mostly due to the cost of
storing information about the transaction. This is roughly eight
times as expensive as a normal Ethereum transaction that does

11

TABLE III: Cost of Snappy operations.

Function Gas USD

Client/Merchant Registration 67, 000 0.06
Statekeeper Registration 510, 000 0.48
Clear Collateral 42, 000 0.04
Withdraw Collateral 23, 000 0.02
Process Payment 169, 000 0.16

TABLE IV: Worst-case claim settlement cost in Gas and USD.

Minimum
Majority

Pending Transactions per Customer

0 1 2 3
50 1.9M ($1.79) 2.7M ($2.54) 3.5M ($3.30) 4.3M ($4.05)

100 3.1M ($2.92) 4.3M ($4.05) 5.5M ($5.19) 6.6M ($6.22)
150 4.2M ($3.96) 5.8M ($5.47) 7.4M ($6.98) 9.0M ($8.49)
200 5.4M ($5.09) 7.4M ($6.984) 9.4M ($8.87) 11.4M ($10.75)
250 6.6M ($6.22) 9.0M ($8.494) 11.3M ($10.66) 13.7M ($12.93)

not invoke a smart contract. In comparison, Mastercard service
fees are ∼1.5% of the transaction value [42]. For example, a
payment of $15 will cost to the merchant $0.22, while in a
payment of $100 the fees will rise to $1.5. Snappy compares
favorably to these charges. BLS signatures [33] enabled us to
aggregate the approval signatures, significantly reducing both
the transaction size and the processing costs.

Claim settlement cost. While our solution enables merchants
to accept payments from customers with arbitrarily many
pending transactions (constrained only by the customer’s own
collateral), the Ethereum VM and the block gas limits constrain
the computations that can be performed during the settlement
process. To examine these constraints, we consider the gas
costs for different numbers of pending transactions, and state-
keeper quorum sizes. While the number of the statekeepers
is seemingly unrelated, it affects the cost of the settlement
due to the aggregation of the public keys. In Appendix B, we
discuss a special case, where each customer is allowed to have
only one transaction pending which simplifies settlement and
reduces its cost significantly.

Table IV shows the worst-case gas costs of settlement
which is few dollars for a typical case (e.g., $1.79 when k =
100 and there is no pending transactions).4 Given Ethreum’s
gas limit of approximately 8M gas units per block, Snappy
claim settlement can either scale up to k = 499 statekeepers
(250 approvals) with no pending transactions (6.6M Gas), or to
3 pending transactions per customer (6.6M Gas) with k = 199
statekeepers (100 approvals).

D. Collateral Comparison

To evaluate our Requirement R2 (practical collaterals), we
compare our deposits to known Layer-2 solutions, as shown
in Table V. For our comparisons, we use example parameter
values that are derived from real-life retail business cases.

Our “small shops” scenario is based on sales numbers
from [43]–[45]. The system has n = 100, 000 customers

4These costs were calculated by assuming that the adversary specifically
crafts previous transactions to maximize the computational load of the settle-
ment. To prevent an adversary from increasing the claim processing costs, the
Arbiter contract could reject any transactions that have more approvals than
the minimum necessary.

TABLE V: Collateral comparison.

Solution Customer Operator
Individual Combined

Channels [8], [9] e · k
↪→ Small Shops $1,000
↪→ Large Retailers $25,000

Hubs [12], [13] e
∑

n e
↪→ Small Shops $10 $1M
↪→ Large Retailers $250 $250M

Snappy max(et)
∑

k max(et)·pt
∑

k max(et)·pt · k
↪→ Small Shops $5 $3,000 $300,000
↪→ Large Retailers $100 $150,000 $15M

and k = 100 merchants. The daily average expenditure of
a customer per merchant is e = $10 and the expenditure of
a customer within t = 3 minutes blockchain latency period is
et = $5. The number payments received by a merchant within
the same time-period is pt = 6 (i.e., one customer payment
every 30 seconds).

Our “large retailers” example corresponds to the annual
sales of a large retailer in the UK [21], [22]. In this case, we
have n = 1 million customers, k = 100 merchants, e = $250,
et = $100 and pt = 15 (i.e., one payment every 12 seconds).

Customer collateral. In payment channels, the customer
collateral grows linearly with the number of merchants. This
leads to large customer collaterals ($1, 000 and $25, 000) in our
example cases. Payment hubs alleviate this problem, but they
still require customers to deposit their anticipated expenditure
for a specific duration (e.g., e = $250), and replenish it
frequently. Snappy requires that customers deposit a collateral
that is never spent (unless there is an attack) and equals the
maximum value of payments they may conduct within the
blockchain latency period (e.g., et = $100).

Merchant collateral. In payment hubs, the operator’s deposit
grows linearly with the number of customers in the system,
since the operator must deposit funds equal to the sum of the
customers’ deposits [12]–[14]. That is, the operator collateral
must account for all registered customers, including the cur-
rently inactive ones. Given our examples, this amounts to $1M
and $250M for the “small shops” and the “larger retailers”
cases, respectively.

In Snappy, each merchant that operates as a statekeeper
deposits enough funds to cover the total value of sales that
the merchants conduct within the latency period t. Once a
transaction gets successfully finalized on the blockchain (i.e.,
after t), the statekeeper can reuse that collateral in approvals
of other payments. Thus, the total size of this collateral is
independent of the number of registered customers, and is
proportional to the volume of sales that merchants handle. In
other words, the statekeeper collateral accounts only for the
customers that are active within the 3-minute latency period.
Given our examples, this amounts to $3,000 and $150,000
which are three orders of magnitude less than in payment hubs.
The combined deposit by all statekeepers (merchants) is shown
on the last column of Table V. In both of our example cases,
the combined deposit is smaller than in payment hubs.

Designing a payment hub where the operator collateral is
proportional to only active customers (and not all registered

12

customers) is a non-trivial task, because the deposited collat-
eral cannot be freely moved from one customer to another [30].
Some commit-chains variants [31] manage to reduce operator
collaterals compared to hubs, but such systems cannot provide
secure and fast payments. Other commit-chain variants [31]
enable fast and safe payments, but require online monitoring
that is not feasible for all retail customers. Thus, we do not
consider commit chains directly comparable and omit them
here (see Section VIII for more details).

Cost of operation. The amount of locked-in funds by system
operators allows us to approximate the cost of operating
Snappy system with respect to other solutions. For exam-
ple, in our retail example case, each merchant that runs a
statekeeper needs to deposit $150k. Assuming 7% annual
return of investment, the loss of opportunity for the locked-in
money is $10,500 per year which, together with operational
expenses like electricity and Internet, gives the operational
cost of Snappy. We consider this an acceptable cost for large
retailers. In comparison, a payment hub operator needs to
deposit $250M which means that running such a hub would
cost $17.5M plus operational expenses which is three orders
of magnitude more.

VII. DISCUSSION

A. Governance

Snappy has, by design, a majority-based governance model.
This means that any majority of statekeeping nodes can decide
to ostracize merchants or statekeepers that are no longer
deemed fit to participate. For example, a majority can stop
processing requests from a merchant who has equivocated
(signed conflicting transactions). If more complex governance
processes are needed (e.g., first-past-the-post voting) the Ar-
biter’s smart contract can be extended accordingly.

B. Censorship Mitigation

A direct implication of Snappy’s governance model is that
a majority of statekeeping nodes can discriminate against a
particular victim merchant by not responding to its payment
approval requests or by delaying the processing of its requests.
Such censorship can be addressed in two ways.

The first approach is technical. Targeted discrimination
against a specific victim merchant could be prevented by
hiding the recipient merchant’s identity during the payment
approval process. In particular, by replacing all the fields
that could be used to identify the merchant (e.g., “recipient”,
“amount”) from the payment Intent with a cryptographic
commitment. Commitments conceal the merchant’s identity
from other merchants (statekeepers) during payment approval,
but allow the merchant to claim any lost funds from the
Arbiter later by opening the commitment. Moreover, if IP
address fingerprinting is a concern, merchants can send their
approval requests through an anonymity network (e.g., Tor
would increase latency by ∼500ms [46]) or through the
customer’s device so as to eliminate direct communication
between competing merchants.

The second mitigation approach is non-technical. In case
of known merchant identities and a mutually-trusted authority
(e.g., a merchants’ association), the victim merchant can file a

complaint against constantly misbehaving merchants. In cases
of widespread attacks, the victim merchant can reclaim their
collaterals in full, deregister from this consortium and join
another consortium.

C. Transaction Privacy

For on-chain transaction privacy, Snappy inherits the
privacy level of the underlying blockchain. For example,
Ethereum provides transaction pseudonymity, and thus every
transaction that is processed with Snappy is pseudonymous
once it recorded on the chain.

During payment approval, the identity of the recipient
merchant can be concealed from all the statekeepers using
cryptographic commitments, as explained above (see Sec-
tion VII-B). However, the pseudonym of the customer remains
visible to the statekeepers.

Well-known privacy-enhancing practices like multiple ad-
dresses and mixing services [47], [48] can be used to enhance
customer privacy. For example, a Snappy customer could
generate several Ethereum accounts, register them with the
Arbiter and use each one of them only for a single payment.
Once all accounts have been used, the customer can de-register
them, generate a new set of accounts, move the money to
the new accounts through a mixing service, and register new
accounts. The main drawback of this approach is that the
user needs to have more collateral locked-in and will pay the
registration fee multiple times.

In the future, privacy-preserving blockchains like
ZCash [49] combined with private smart contracts based
on Non-Interactive Zero-Knowledge proofs (NIZKs) could
address the on-chain confidentiality problem more efficiently
and protect the privacy of both the users and the merchants.
However, realizing such a secure, efficient and private
smartcontract language while achieving decent expressiveness,
remains an open research problem [50].

D. Limitations

The main drawbacks of using Snappy are as follows. First,
customers and merchants need to place small collaterals, and
thus keep a percentage of their funds locked-in for extended
periods of time. Second, Snappy can scale up to a moderate
number of statekeeping merchants but cannot support hundreds
of thousands or millions statekeeping nodes. In such cases,
alternative deployment options can be used (see Appendix B).
Third, Snappy does not move the payment transactions off the
chain and thus customers still need to cover the transaction
processing fees charged by the blockchain’s miners.

VIII. RELATED WORK

Payment channels enable two parties to send funds to each
other off the chain, while adding only an opening and a
closing transaction on the chain [8], [9], [12]. With the opening
transaction the two parties lock funds in the channel, which
are then used throughout the lifetime of the channel. In cases
where the two parties send approximately the same amount
of funds to each other over time, a payment channel can
enable almost indefinite number of near-instant payments.
However, in the retail setting customers send funds unilaterally

13

towards merchants. Moreover, customers transact with several
merchants and thus each customer will need to maintain several
channels and keep enough funds in them.

Payment networks utilize the payment channels established
between pairs of users to build longer paths [10], [11]. While
this is a straightforward idea, in practice, finding routes reliably
is not a trivial task [28]. This is because the state of the
individual channels changes arbitrarily over time and thus the
capacity of the graph’s edges fluctuate. Moreover, the unilateral
nature of retail payments (customer → merchant) quickly
depletes the available funds in the individual channels, pre-
venting them from serving as intermediaries to route payments
by other customers [29]. Miller et. al [8] showed that even
under favorable conditions (2.000 nodes, customers replenish
their accounts every 10 seconds, maximum expenditure of
$20, no attacks), approximately 2% of the payments will fail.
At peak hours the ability of the network to route payments
from customers to merchants is expected to degrade further.
Rebalancing methods [51] have only a meager effect, primarily
because credit cycles are rarely formed in real life [8].

Payment hubs introducing a single central point connecting
all customers to all merchants. This eliminates the need of
finding routing paths and in theory require a smaller total
amount of locked funds for the customers [30]. However, this
approach comes with two main drawbacks. First, it introduces
a single point of failure for payment availability. And second,
the hub operator needs to deposit very large amount of funds to
match the total expenditure of all customers [12], [13] and thus
will likely charge service fees. For instance, a hub that serves
n = 1M customers having in total of $250M in their channels,
must also lock-in that amount in channels with merchants to
be able to accommodate payments, in particular during peak
hours. Hub operators would charge significant fees to cover
the opportunity cost of the large locked-in funds.

Commit-chains are parallel (and not yet peer-reviewed)
work [30], [31], [52] that may either reduce or eliminate the
operator collaterals compared to payment hubs. The main idea
of commit-chains is to maintain a second-layer ledger and
make periodic commitments (called checkpoints) of its state
transitions to the main chain. In one proposed variant [31],
the central operator does not have to place any collateral,
but such scheme does not enable fast and safe payments,
because users need to wait for the next checkpoint which
may take hours or days. Another proposed variant [31] allows
safe and fast payment, but has other problems. First, the
users need to monitor the blockchain (hourly or daily) and
dispute checkpoints if their balance is inaccurately represented.
Such monitoring assumption is problematic, especially in use
cases like retail with large number of customers using various
client devices. Second, although the operator’s collateral is
slightly lower than those of payment hubs, it still remains
very large (e.g., $200M in our “large retailers” use case) [14].
Snappy enables fast and safe payments with smaller merchants
collaterals for customers that remain mostly offline.

Side-chains use a permissioned set of validators to track
pending transactions, typically using a BFT consensus pro-
tocol [16], [17]. Such solutions change the trust assumptions
of permissionless blockchains significantly, as BFT consensus
requires that 2/3 of the validators must be trusted. Side chains

also require multiple rounds of communication and have high
message complexity.

Probabilistic payments such as MICROPAY1/2/3 can in cer-
tain scenarios enable efficient and fast payment approval [53],
[54]. However, such solutions require that the service provided
is continuous and granular so that the payments’ probabilistic
variance becomes negligible. In retail payments, this provides
no guarantee that the merchant will be paid the right amount.

IX. CONCLUSION

In this paper we have presented Snappy, a novel system
that enables merchants to safely accept fast on-chain payments
on slow blockchains. We have tailored our solution for settings
such retail payments, where currently popular cryptocurrencies
are not usable due to their high latency and previous solutions
such as payment channels, networks and hubs have significant
limitations that prevent their adoption in practice.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers,
the shepherd Stefanie Roos, Mary Maller and George Danezis.
This research has been partially supported by the Zurich
Information Security and Privacy Center (ZISC).

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[2] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun,
“Misbehavior in bitcoin: A study of double-spending and accountabil-
ity,” ACM Transactions on Information and System Security (TISSEC),
vol. 18, no. 1, 2015.

[3] M. Lei, “Exploiting bitcoin’s topology for double-spend attacks,” 2015.
[4] M. Freed-Finnegan and J. Koenig, “Visa quick chip,” https://usa.visa.

com/visa-everywhere/security/quick-chip-interview.html, 2017.
[5] Visa, “Visa quick chip for emv,” https://vimeo.com/163309180, 2017.
[6] Capgemini, “The quick emv solution,” https://www.capgemini.com/

wp-content/uploads/2017/07/the quick emv card processing 2016
web.pdf, 2016.

[7] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Consensus in the age of blockchains,” in ACM
Advances in Financial Technologies (AFT), 2019.

[8] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2019, pp. 508–526.

[9] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G. Sirer,
“Teechain: Reducing storage costs on the blockchain with offline pay-
ment channels,” in ACM International Systems and Storage Conference
(SYSTOR), 2018.

[10] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” draft version 0.5, vol. 9, p. 14, 2016.

[11] R. Network, “Raiden: Cheap, scalable token transfers for ethereum,”
https://raiden.network/, 2018.

[12] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in IEEE Symposium on Security
and Privacy (SP), 2019.

[13] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg,
“Tumblebit: An untrusted bitcoin-compatible anonymous payment hub,”
in Network and Distributed System Security Symposium (NDSS), 2017.

[14] L. Gudgeon, P. McCorry, P. Moreno-Sanchez, A. Gervais, and S. Roos,
“Sok: Off the chain transactions,” 2019.

14

https://usa.visa.com/visa-everywhere/security/quick-chip-interview.html
https://usa.visa.com/visa-everywhere/security/quick-chip-interview.html
https://vimeo.com/163309180
https://www.capgemini.com/wp-content/uploads/2017/07/the_quick_emv_card_processing_2016_web.pdf
https://www.capgemini.com/wp-content/uploads/2017/07/the_quick_emv_card_processing_2016_web.pdf
https://www.capgemini.com/wp-content/uploads/2017/07/the_quick_emv_card_processing_2016_web.pdf
https://raiden.network/

[15] P. McCorry, S. Bakshi, I. Bentov, A. Miller, and S. Meiklejohn, “Pisa:
Arbitration outsourcing for state channels,” IACR Cryptology ePrint
Archive, 2018. [Online]. Available: https://eprint.iacr.org/2018/582

[16] J. Dilley, A. Poelstra, J. Wilkins, M. Piekarska, B. Gorlick, and
M. Friedenbach, “Strong federations: An interoperable blockchain solu-
tion to centralized third-party risks,” arXiv preprint arXiv:1612.05491,
2016.

[17] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations
with pegged sidechains,” https://blockstream.com/sidechains.pdf, 2014.

[18] Digiconomist, “Bitcoin energy consumption index,”
https://digiconomist.net/bitcoin-energy-consumption, 2019.

[19] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE Symposium on Security and Privacy (SP), 2018.

[20] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in ACM Conference on Computer and
Communications Security (CCS), 2018.

[21] T. PLC, “Tesco’s christmas in numbers,” https://se-report.tescoplc.com/
news/news-releases/2016/tesco-christmas-in-numbers/, 2016.

[22] Tesco, “Tesco annual report,” https://www.tescoplc.com/media/474793/
tesco ar 2018.pdf, 2018.

[23] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” in ACM conference on Computer and communi-
cations security (CCS), 2012.

[24] T. Hanke, M. Movahedi, and D. Williams, “DFINITY Technology
Overview Series, Consensus System,” arXiv preprint arXiv:1805.04548,
2018.

[25] The Wanchain Community, “Wanchain yellow paper,”
https://github.com/wanchain/crypto/raw/master/Wanchain%20yellow%
20paper%20English%20version.pdf, 2018.

[26] T. N. Community, “NXT Blockchain,” https://www.dropbox.com/s/
cbuwrorf672c0yy/NxtWhitepaper v122 rev4.pdf, 2014.

[27] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network.” in USENIX Security Symposium, 2015.

[28] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and
O. Osuntokun, “Flare: An approach to routing in lightning network,”
http://bitfury.com/content/5-white-papers-research/whitepaper flare
an approach to routing in lightning network 7 7 2016.pdf, 2016.

[29] F. Engelmann, H. Kopp, F. Kargl, F. Glaser, and C. Weinhardt, “Towards
an economic analysis of routing in payment channel networks,” in ACM
Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers, 2017.

[30] R. Khalil and A. Gervais, “Nocust – a non-custodial 2nd-layer financial
intermediary,” Gas, vol. 200, 2018.

[31] R. Khalil, A. Gervais, and G. Felley, “Nocust–a securely scalable
commit-chain,” 2019.

[32] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, 2002.

[33] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” J. Cryptology, vol. 17, no. 4, 2004.

[34] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), 2003.

[35] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Secur-
ing multiparty signatures against rogue-key attacks,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), 2007.

[36] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for
smaller blockchains,” IACR Cryptology ePrint Archive, vol. 2018, p.
483, 2018.

[37] M. Fischlin, “Communication-efficient non-interactive proofs of knowl-
edge with online extractors,” in Annual International Cryptology Con-
ference (CRYPTO), 2005.

[38] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Secur-
ing multiparty signatures against rogue-key attacks,” in Annual Inter-

national Conference on the Theory and Applications of Cryptographic
Techniques, 2007.

[39] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom, “Mea-
suring latency variation in the internet,” in International on Conference
on emerging Networking EXperiments and Technologies, 2016.

[40] M. Fadhil, G. Owen, and M. Adda, “Bitcoin network measurements for
simulation validation and parameterisation,” in International Network
Conference (INC), 2016.

[41] S. Ben Mariem, P. Casas, and B. Donnet, “Vivisecting blockchain p2p
networks: Unveiling the bitcoin ip network,” in ACM CoNEXT Student
Workshop, 2018.

[42] Mastercard, “Uk - domestic interchange fees,” https://tinyurl.com/
ybzkcxak, 2017.

[43] S. Campion, “Transit-oriented displacement?: The san jose flea market
and the opportunity costs of smart growth,” 2011.

[44] A. Pelham, E. Sills, and G. S. Eisman, Promoting Health and Wellness
in Underserved Communities: Multidisciplinary Perspectives through
Service Learning. Service Learning for Civic Engagement Series.
ERIC, 2010.

[45] J. A. List, “The economics of open air markets,” National Bureau of
Economic Research, Tech. Rep., 2009.

[46] T. T. Project, “Tor metrics,” https://metrics.torproject.org/onionperf-
latencies.html, 2019.

[47] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for bitcoin,” in European Symposium on
Research in Computer Security (ESORICS), 2014.

[48] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten, “Mixcoin: Anonymity for bitcoin with accountable mixes,” in
Financial Cryptography and Data Security (FC), 2014.

[49] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” Technical report, 2016–1.10. Zerocoin Electric Coin
Company, Tech. Rep., 2016.

[50] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov, and
M. Vechev, “zkay: Specifying and enforcing data privacy in smart
contracts,” in ACM Conference on Computer and Communications
Security (CCS, 2019.

[51] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in ACM Conference on Computer and Communications
Security (CCS), 2017.

[52] R. A. E. Khalil and A. Gervais, “System and method for scaling
blockchain networks with secure off-chain payment hubs,” May 9 2019,
uS Patent App. 16/183,709.

[53] D. L. Salamon, G. Simonsson, J. Freeman, and B. J. Fox, “Orchid:
Enabling decentralized network formation and probabilistic micro-
payments,” 2018.

[54] R. Pass et al., “Micropayments for decentralized currencies,” in ACM
Conference on Computer and Communications Security (CCS), 2015.

[55] J. Kwon, “Tendermint: Consensus without mining,” 2014.

[56] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Inter-
national Cryptology Conference (CRYPTO), 2017.

[57] P. Vasin, “Blackcoin’s proof-of-stake protocol v2,” 2014.

[58] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-of-
stake blockchain protocols,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, 2017.

[59] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in ACM Symposium
on Operating Systems Principles (SOSP), 2017.

[60] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in ACM Conference
on Computer and Communications Security (CCS), 2016.

[61] P. Li, G. Wang, X. Chen, and W. Xu, “Gosig: Scalable byzantine
consensus on adversarial wide area network for blockchains,” arXiv
preprint arXiv:1802.01315, 2018.

[62] E. Research, “Ethereum 2.0 spec–casper and sharding,” https://github.
com/ethereum/eth2.0-specs/blob/master/specs/core/0 beacon-chain.md,
2018.

15

https://eprint.iacr.org/2018/582
https://blockstream.com/sidechains.pdf
https://se-report.tescoplc.com/news/news-releases/2016/tesco-christmas-in-numbers/
https://se-report.tescoplc.com/news/news-releases/2016/tesco-christmas-in-numbers/
https://www.tescoplc.com/media/474793/tesco_ar_2018.pdf
https://www.tescoplc.com/media/474793/tesco_ar_2018.pdf
https://github.com/wanchain/crypto/raw/master/Wanchain%20yellow%20paper%20English%20version.pdf
https://github.com/wanchain/crypto/raw/master/Wanchain%20yellow%20paper%20English%20version.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://tinyurl.com/ybzkcxak
https://tinyurl.com/ybzkcxak
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/0_beacon-chain.md

[63] E. Conner, “Transaction throughput under shasper,” https://ethresear.ch/
t/transaction-throughput-under-shasper/3467, 2018.

[64] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,” 2014.
[65] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv

preprint arXiv:1710.09437, 2017.
[66] M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for

modular exponentiation and digital signatures,” in International Con-
ference on the Theory and Application of Cryptographic Techniques
(EUROCRYPT), 1998.

APPENDIX

A. Background on Permissionless Consensus

In this appendix we review additional examples of recent
permissionless consensus system. We center our review around
schemes that do not introduce significant additional security
assumptions, and refer the reader to [7] for a more thorough
survey.

Proof of Stake is proposed as an alternative to computational
puzzles in Proof of Work, where the nodes commit (i.e., stake)
funds in order to participate in the consensus process [55]–
[58]. These solutions are based on an economic-driven model
with nodes being rewarded for honest behavior and penalized
for diverging from the consensus. While they provide some la-
tency improvements, they do not reach the 3 seconds averages
of centralized payment processors.

For example, Ouroboros [56] reports a throughput of ap-
proximately 300 transactions per second and a block frequency
10-16 times smaller than that of Bitcoin. Thus, a merchant
will still have to wait for several minutes before a transaction
can be considered finalized. As another example of Proof-of-
Stake system, Algorand [59] has a throughput that is 125×
higher than that of Bitcoin, and latency of at least 22 seconds,
assuming a network with no malicious users.

Sharding. While Proof of Stake techniques involve the whole
network in the consensus process, sharding techniques promise
significant performance improvement by splitting the network
in smaller groups. For example, Elastico [60] achieves four
times larger throughput per epoch for network sizes similar to
that of Bitcoin. However, it provides no improvement on the
confirmation latency (∼ 800 seconds). Similarly, Gosig [61]
can sustain approximately 4.000 transactions per second with
an ∼1 minute confirmation time. Rapidchain [20] has a
throughput of 7, 300 transactions per second with a 70-second
confirmation latency.

Omniledger [19] is the only proposal that reports perfor-
mance (both throughput and latency) compatible with retail
payments. However, this comes at a security cost. Their low-
latency transactions (i.e., Trust-but-Verify) use shards com-
prised of only a few (or even one) “validators”. In the retail
setting, this enables malicious validators to launch multi-
spending attacks by approving several conflicting payments
towards various honest merchants. While the attack and the
malicious validator(s) will be uncovered by the core validators
within ∼1 minute, this time-period suffices for an adversary
to attack multiple merchants resulting in substantial losses.

Shasper for Ethereum is expected to be capable of handling
13, 000 transactions per second, while optimistic estimates
report a minumum block frequency of ∼8 seconds [62]–[65].

Fig. 5: Centralized Snappy instance. The customers ci initiate
payments towards the merchants mj , who then consult with the
central statekeeper s and either accept or reject the payment.

However, even with such a small block interval, the latency
remains too high for retail purchases, as merchants will need
to wait for several blocks for transactions to eventually reach
finality.

B. Deployment Alternatives for Snappy

In this appendix we discuss alternative deployment options.

Centralized Snappy. While decentralization is one of the
main benefits of Snappy, there may be cases where having
one central party is also acceptable. In this case, the merchants
can appoint a single party to approve or reject payments. This
simplifies our protocols as each payment requires only one
approval query instead of several. However, if the central party
is untrusted, it still has to deposit a collateral for the merchants
to claim in case it equivocates. However, relying on a single
party comes with drawbacks. In particular, such a setup adds
a centralized layer on top of a fully decentralized blockchain,
while the reliance on a single service provider will likely result
in increased service fees.

Non-statekeeping Merchants In the previous section, we
discussed a fully centralized version of Snappy that allows
the system to scale even further and simplifies statekeeping.
While this setup has several advantages, the liveness and
quality of service of the deployment relies on the single party
that can unilaterally decide on changing the service fees and
processes. An alternative solution that retains most of the
centralization benefits while remaining decentralized (but not
fully) is allowing non-statekeeping merchants. Merchants can
join the system and decide if they want to deposit a collateral
and perform statekeeping tasks or they simply want to be able
to receive payments.

This allows merchants who choose not to keep state to still
make use of the Snappy deployment and enables the system to
scale to millions of merchants. To incentivize statekeeping, a
small service fee could be paid by non-statekeeping merchants.
to those who have allocated a statekeeping collateral. While
this goes beyond the scope of this paper, it is probably
preferable if the statekeepers’ set remains open to all interested
merchants (cf. to being capped or fixed) and the service

16

https://ethresear.ch/t/transaction-throughput-under-shasper/3467
https://ethresear.ch/t/transaction-throughput-under-shasper/3467

fees are determined dynamically based on the offer/demand.
Note that several merchants may be represented by a single
statekeeping node. For example, instead of having small shops
match the collateral of large chain stores, their association
could maintain one node that performs the statekeeping for
all of them and routes their to-be-approved payments to the
rest of the statekeepers.

This setup has the advantage of being able to use any
trust relationships (e.g., small merchants trust their association)
when/where they exist, while still allowing a trustless setup for
actors who prefer it.

One pending transaction. Much of the complexity of
Snappy’s protocols comes from the fact that the pending
transactions of a customer should never exceed in value the
collateral. One possible way to reduce this complexity is by
constraining the number of allowed pending transactions to 1.
Such a setup allows the customers to conduct at most one
transaction per block, and greatly simplifies the settlement
process, as there are no pending transaction to be provided
by the merchant. We believe that such a setup is realistic and
may be preferable in cases where the customers are unlikely
to perform several transactions within a short period of time.
However, this is an additional assumption that may reduce the
utility of the system in some cases. For example, a customer,
who after checking out realizes that they forgot to buy an item,
will have to wait until the pending transaction is confirmed.

Signature verification batching. While the computational
cost of verifying an aggregated signature (i.e., two pairings)
is negligible for a personal computer, this is not true for
the Ethereum Virtual Machine, where a pairing operation is
considerably more expensive than a group operation. Our
original scheme tackles this cost by having the arbiter verify
signatures only in case of disputes. As an additional cost-
reduction optimization, the arbiter can use techniques such as
those in [66] to batch and check several signatures simultane-
ously

Let’s assume that there are ` aggregated signatures
(σ1, . . . , σ`) to be verified for the messages (m1, . . . ,m`). The
arbiter samples ` random field elements (γ1, . . . , γ`) from Zp.
The verifier considers all the signatures to be valid if

e

(∏̀
i=1

σγii , h

)
=
∏̀
i=1

e

H(mi)
γi ,

n∏
j=1,τqi [j]=1

vj

 .

This roughly halfs the verification costs. In systems where the
number of transactions is considerably more than the number
of statekeepers, we can reduce the costs per transaction further.
Assume that there are ` aggregated signatures (σ1, . . . , σ`) to
be verified for the messages (m1, . . . ,m`) where `� n. The
verifier samples ` random field elements (γ1, . . . , γ`) from Zp.
The verifier considers all the signatures to be valid if

e

(∏̀
i=1

σγii , h

)
=

n∏
j=1

e

 ∏̀
i=1,τqi [j]=1

H(mi)
γi , vj

 .

The cost of verifying a batch of ` signatures signed by n
merchants is then n + 1 pairing operations and 2` group
exponentiations in G.

Fig. 6: Moving majority attack enables a customer to have two trans-
actions with the same index value approved by disjoint statekeeper
majorities.

Dynamic Statekeepers’ Consortia. So far we have considered
only cases where customers joined and withdrew from the
system. Similarly, one can imagine that statekeepers could
decide to leave or new statekeepers may want to join an
existing deployment. Such functionality can be easily facili-
tated by modifying through the registration and de-registration
algorithms available for customers. However, while churning
customers do not pose a threat to the security of the system,
changes in the set of statekeepers may result in attacks.

Such an attack could enable a malicious customer to have
two approved transactions with the same index value. As
shown in Figure 6, initially the system features 5 statekeepers
(s1 . . . s5) and a merchant who wants to have a transaction
τ approved, reaches out to s1, s2 and s3. Subsequently, two
new statekeepers s6 and s7 join the system. The malicious
customer now issues another transaction τ ′, such that τi = τ ′i .
The merchant receiving τ ′ now queries a majority of the
statekeepers (i.e., s4, s5, s6 and s7) and gets the transaction
approved. At the final stage of the attack c issues another
transaction that invalidates τ and τ ′ (e.g., a doublespend),
while the malicious merchant quickly claims τ ′v from the
customer’s collateral. Because of the way the arbiter processes
claims (Line 12 in Algorithm 3), the honest merchant is
now unable to claim τv from colc. Moreover, none of the
statekeepers equivocated and thus no funds can be recouped
from their collateral.

Snappy can safely support a dynamically changing set
of statekeepers, if appropriate protection mechanisms are
deployed. For example, such attacks can be prevented: 1)
by giving early notice to the merchants about changes in
the set (e.g., multistage registration), and 2) by waiting (a
few minutes) until all past transactions are finalized in the
blockchain before/after every change.

17

	Introduction
	Problem Statement
	Motivation
	System Model and Assumptions
	Limitations of Known Solutions
	Requirements

	Snappy Overview
	Strawman Designs
	Snappy Main Concepts

	Snappy Details
	Background on BLS Signatures
	Data Structures
	Registration
	Payment Approval
	Claim Settlement
	De-registration

	Snappy Analysis
	Safety
	Liveness

	Snappy Evaluation
	Latency
	Scalability
	Processing Cost
	Collateral Comparison

	Discussion
	Governance
	Censorship Mitigation
	Transaction Privacy
	Limitations

	Related Work
	Conclusion
	References
	Appendix
	Background on Permissionless Consensus
	Deployment Alternatives for Snappy

